Image from Google Jackets

Solving Higher-order Equations : from logic to programming Christian Prehofer

By: Language: English Publication details: Boston Birkhauser 1998Description: vii; 186 p. 24 cmISBN:
  • 9780817640323
Subject(s): DDC classification:
  • 005.13 PRE
Summary: This monograph develops techniques for equational reasoning in higher-order logic. Due to its expressiveness, higher-order logic is used for specification and verification of hardware, software, and mathematics. In these applica­ tions, higher-order logic provides the necessary level of abstraction for con­ cise and natural formulations. The main assets of higher-order logic are quan­ tification over functions or predicates and its abstraction mechanism. These allow one to represent quantification in formulas and other variable-binding constructs. In this book, we focus on equational logic as a fundamental and natural concept in computer science and mathematics. We present calculi for equa­ tional reasoning modulo higher-order equations presented as rewrite rules. This is followed by a systematic development from general equational rea­ soning towards effective calculi for declarative programming in higher-order logic and A-calculus. This aims at integrating and generalizing declarative programming models such as functional and logic programming. In these two prominent declarative computation models we can view a program as a logical theory and a computation as a deduction
Tags from this library: No tags from this library for this title.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Call number Status Barcode
Reference Reference Anna Centenary Library 3RD FLOOR, A WING 005.13 PRE (Browse shelf(Opens below)) Not for loan 208845

Includes bibliographies and index

This monograph develops techniques for equational reasoning in higher-order logic. Due to its expressiveness, higher-order logic is used for specification and verification of hardware, software, and mathematics. In these applica­ tions, higher-order logic provides the necessary level of abstraction for con­ cise and natural formulations. The main assets of higher-order logic are quan­ tification over functions or predicates and its abstraction mechanism. These allow one to represent quantification in formulas and other variable-binding constructs. In this book, we focus on equational logic as a fundamental and natural concept in computer science and mathematics. We present calculi for equa­ tional reasoning modulo higher-order equations presented as rewrite rules. This is followed by a systematic development from general equational rea­ soning towards effective calculi for declarative programming in higher-order logic and A-calculus. This aims at integrating and generalizing declarative programming models such as functional and logic programming. In these two prominent declarative computation models we can view a program as a logical theory and a computation as a deduction

There are no comments on this title.

to post a comment.

Find us on the map